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Preface

In any study of the relative value of one particular

method compared with another, one must always consider the

context in which the methods were compared. The four

methods compared in this study: collocation, finite differ-

ences, Galerkin, and least squares, have been bent, folded,

and mutilated by the pencil and erasure of a young aspiring

engineer. Fortunately, the methods and the engineer are

still operating today and I have several people to thank

for that.

The gentleman who has patiently guided me through

this project is Captain James E. Marsh. His guidance and

understanding were of great value to me. Dr. John Jones, Jr.

and Major Stephen J. Koob also contributed significantly to

my understanding of this project. On the nontechnical

aspects of the project, my wife Marisa was a true inspira-

tion. Her thoughtful support was priceless to me. And to

Ms. Phyllis Reynolds my very capable typist, I owe my most

sincere thanks for her patience and perseverance.
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Abstract

Four numerical methods are used to solve a spe-

cific set of problems and then the methods are compared for

accuracy and efficiency.

The methods are: standard finite differences,

collocation, Galerkin, and least squares. The latter three

methods are finite element methods which use either Lagrange

linear, Hermite cubic, or Hermite septic piecewise poly-

nomials as interpolation functions.

The problem set consists of second- and fourth-

order, linear and nonlinear, differential equations with

constant and variable coefficients. The linear equations

* ,govern elementary structural mernbers and the nonlinear equa-

tion is a one-dimensional analog for transonic flow past an

airfoil.

The three major conclusions are: (1) the least

squares method with Hermite cubic polynomials was the method

of choice for the second-order linear equations, (2) the

collocation method was chosen over the Galerkin and the

finite difference methods for the fourth-order equations,

and (3) Galerkin method was chosen over the collocation

method for the nonlinear problem.

vii



COMPARISON OF NUMERICAL ANALYSIS METHODS FOR

SOLVING ONE-DIMENSIONAL, ELLIPTIC

DIFFERENTIAL EQUATIONS

I. Introduction

Background

Comparisons of numerical analysis methods for

solving differential equations have been of interest for

many years. One of the most recent studies was performed

by Houstis et al. (Ref 5). In this study four methods were

evaluated for solving second-order, linear, elliptic,

partial differential equations. The four methods were:

standard finite differences; collocation; Galerkin; and

least squares using Hermite cubic piecewise polynomials.

They concluded that:

1. There is normally a "crossover point" at low accu-
racy beyond which collocation is more efficient than
standard finite differences. Even when finite
differences is more efficient, it is by a small
amount while collocation is sometimes dramatically
more efficient than finite differences. Colloca-
tion is much superior for problems whose boundary
conditions involved derivatives.

2. There is practically no difference at all between
Galerkin and least squares performance. They tend
to be slightly more accurate than collocation but
are very much less efficient because of the increased
work to compute the coefficients in the matrix prob-
lem to be solved (Ref 5:324-325].
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In view of this work the question arises, will these results

hold for higher-order linear and nonlinear differential

equations?

The three differential equations selected for com-

parison analysis in this thesis are equations which govern

elementary problems from the field of aeronautical engineer-

ing. The first problem, the axial deflection of a rod, is

governed by a second-order, linear, ordinary differential

equation. The second problem, the bending of a be_,, is

governed by a fourth-order, linear, ordinary differential

equation. In practice these two structural members are

used to model more complicated structures. For example,

in the computer program "ANALYZE," used by the Air Force

Flight Dynamics Laboratory for analysis of aerospace struc-

tures, the rod member is used to model spar and rib caps

and other line elements (Ref 11:18). The third differential

equation is second-order and nonlinear; it represents a

one-dimensional, steady, analog to the problem of transonic

flow over an airfoil. Fung, et al. (Ref 3), solved this

equation with unsteady perturbations using a finite differ-

ence method. The finite element methods included in this

thesis have not been used previously to solve this non-

linear equation. The purpose of this thesis is to determine

if the results of Houstis (Ref 5) apply to these three prob-

lems.

The numerical methods evaluated by Houstis and used

in this study can be classified into two categories: finite

2



difference methods, and finite element methods. Three formu-

lation techniques were used to obtain the finite element

equations. They are: collocation, Galerkin, and least

squares methods. These numerical methods as used in this

study transform the original continuous differential equa-

tion into a system of algebraic equations. These equations

can be solved to yield an approximate solution to the

original continuous problem. Although the four methods all

yield algebraic equations, the approaches are very different

for finite element methods as compared to finite difference

methods.

The finite difference method approximates the

derivatives appearing in the governing differential equa-

tion by difference quotients (Ref 4:222-228). These quo-

tients are formulated at N (a finite number) points in the

problem domain. This process generates N equations, non-

linear in general, with N unknowns. After implementing the

boundary conditions, the resulting equations can be solved

for the remaining unknown values. These values of the

function at N points form a discrete approximation to the

solution of the problem.

Unlike the finite difference method, the finite ele-

ment methods yield a piecewise continuous approximation to

the solution (Ref 6:3-9). The approximation is achieved

by discretizing the domain into 2 elements, with N nodes

and M nodal parameters. The approximate solution in a

"global" sense is given by:

3
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j=l

where

S= global approximate solution,

N. = global shape (interpolation) functions, and

= nodal parameters (field variables)

When Eq (1) is substituted into the continuous differential

equation there will be some error for all cases except

where the number of parameters M is infinite, or where the

shape functions contain all terms of the exact solution.

The error e is given by

= £() - f (2)

where

e = vector of nodal errors,

£ = differential operator, and

f = vector of equivalent nodal forces.

The finite element equations are derived in this thesis by

the method of weighted residuals (Ref 6). This method

requires the residual error c be zero in some average sense.

The generalized orthogonality condition is used to achieve

this result. In general, the error is forced to satisfy the

following equations

fE*idO = 0 i=l,2,...,M (3)
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where

n = problem domain,
Vi = weighting functions.

The procedure yields M algebraic equations with M unknown

nodal parameters. When solved for, the parameters can be

substituted in Eq (1) to give the approximate solution to

the problem. These equations can be simplified by writing

Eq (3) as the sum of integrals over each element. By using

an appropriate coordinate transformation each integral can

be evaluated on a local basis. Likewise, the approximate

global solution * is assumed to be the sum of the approxi-
mate solutions within each element.

Thus
- E

= *(e) (4)

e=l

where ;(e) is the approximate "local" solution in element

e. These local solutions are related to the elemental

nodal parameters by the following equation:

m
(e) N.2 (5)

j=l

where

m = number of nodal unknowns associated with
element e,

N. = local shape functions defined for element e,
3 and

j = nodal parameters associated with element e.



Then if the residual error in each element is forced to

satisfy Eq (3) over the element's domain, the result is m

equations in m unknowns. These m equations will have the

same form for all like elements. Thus, the equations for

other like elements are easily generated, and the global

equations can be assembled from the E sets of local equa-

tions. This similarity between like elements greatly

reduces the amount of work required to formulate the global

equations. More of the details for the finite element tech-

niques are given in Appendices C and D.

Approach

The general approach followed by Houstis (Ref 5)

is used in this work. This approach consists of choosing:

a problei set from the specified domain, the numerical

methods, and the performance criteria for evaluating the

methods. The next step is to select and solve specific

problems; and, lastly, evaluate each method according to the

criteria established.

The problem set has been briefly described in the

previous section. It consists of second- and fourth-order,

linear differential equations with both constant and vari-

able coefficients. The last problem is a second-order

nonlinear differential equation. The two constant coef-

ficient, linear equations are solved for two sets of

boundary conditions and two different forcing functions.

The two variable coefficient equations are solved for the

6



same two sets of boundary conditions and for one forcing

function. The problem set is described in greater detail

in Chapter II.

The standard finite difference method is used only

to solve the linear problems whereas the finite element

methods are used for all of the problems. The finite dif-

ference formulations for each problem are presented in

Appendix B. The finite element formulations for each prob-

lem are described in Appendices C and D.

The performance criteria chosen are: ease of formu-

lation, accuracy of the solution, computational time

required, and "efficiency" of the numerical method. Effi-

ciency was chosen in this study as a function of formation

time versus accuracy achieved; where accuracy was defined

as the maximum error at any node or grid point. The imple-

mentation of the methods and the evaluation of their perform-

ance was done with the use of computer programs written by

the author in FORTRAN EXTENDED. Several routines were used

from the International Mathematical and Statistical Library

(Ref 7) for solving the systems of equations and for matrix

manipulations. The programs were executed on the Aero-

nautical Systems Division Computer at Wright-Patterson Air

Force Base, Ohio.

7
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TI. Problem Set From One-Dimensional

Elliptic Differential Equations

Second-Order Linear--Axial Rod

The axial deflection of a rod under the influence

of an axially distributed force is illustrated in Fig. 1.

This system is governed by the differential equation:

d A(x)E du(x) = -F(x) (6)

where

E = Young's modulus,

u(x) = axial deflection,

F(x) = axially distributed force, and

A(x) = cross-sectional area.

For a tapered rod with a taper ratio a, the cross-sectional

area is given by

A(x) = A (l- x) , O<x<L (7)

where A is the area at the root of the rod. If the taper

ratio a is zero, the area is constant and the problem

reduces to the uniform rod. Two possible boundary condi-

tions at the ends are:

8



(a) Clamped-clamped, half-sin load, ct=O

P Psin M

x

(b) Clamped-free, uniform load, at=0.5

FWx)-P (constant)

A=root area UWA xE,

Fig. 1. Uniaxial Deflection of a Rod
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U(xk) = 0 - zero displacement (8)

A(x)E du(x) 0 - zero axial force (9)dx
. X=Xk

where xk is the coordinate at the particular end. The six

cases of the axial rod studied are detailed in Table I,

where the uniform load is F(x) = P (constant); and the"half-

sin load is F(x) = P sin ( L

Fourth-Order Linear--Beam in Bending

The governing differential equation for the bending

displacement of a beam subjected to a transverse load, as

illustrated in Fig. 2 is fourth-order and linear. The

equation is

d21 (x)E d 2W(X) Fx) (10)
d2 dx2

where w(x) is the transverse displacement and I(x) is the

cross-sectional moment of inertia. The moment of inertia

is given by:

(x) = I (1- a -- ) , O<x<L (11)

where I is the moment of inertia at the root of the beam.

The boundary conditions studied with Eq (10) represent the

same end constraints as studied with the rod. The boundary

conditions for a clamped end are:

10



(a) Clamped-clamped, half-sin load, a=0

L

I (X),E,L
WWx

(b) Clamped-free, uniform load, at=0.5

P~x W P (constant)

I (x) ,E, L w x)

Fig. 2. Transverse Bending Displacement of a Beam

I11
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w(xk) = 0 - zero displacement

(12)
dw 0 - zero slope
dx

For a free end the boundary conditions are

I(x)E d2w = 0 - zero bending moment
dx

2

X=X
(13)

d'wI(x)E d3 = 0 - zero shear force

x=xk

As with the axial rod, six cases are studied. In all cases

the boundary conditions at the left end are given by Eq (12)

with the coordinate xk = 0. The details are given in

Table II.

Table II

Beam Problems--Exact Solutions

Taper BC Eqn Exact Sol
Description Ratio at =L Eqn No

Clamped-Clamped Uniform
Beam, Uniform Load 0.0 (12)

w(x) = 2I - 4Lx 3 + 6L2x21 (14)

13
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Table II--Continued

Taper BC Eqn Exact Sol
Description Ratio at TL Eqn No

Clamped-Free Uniform

Beam, Uniform Load 0.0 (13)

w(x) = P41x - 2Lx3 + Lx (15)2~) 4EI i(5

Taper BC Eqn Exact Sol
Description / Ratio at x=L Eqn No

Clamped-Clamped Uniform
Beam, Half-Sin Load 0.0 (12)

X(X) L 2  x X2 2

xE - - - sin - + x -xL (16)
7 

3 AE I rL

Taper BC Eqn Exact Sol
Description Ratio at x=L Eqn No

Clamped-Free Uniform
Beam, Half-Sin Load 0.0 (13)

x(x) PL i - A x3  Lx2  Lx (17)iAE it L 6 2 72

14
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Table II--Continued

Taper BC Eqn Exact Sol
Description Ratio at x;L Eqn No

Clamped-Clamped Variable
Beam, Uniform Load 0.5 (12) (18)

4L2  PLx 3 C x2  2uw(x) = W22S +2E (Cl-PL) + [(2L-x) In (l -) + x] (PL-CI +

+ n In 0. 5 C2 = l n 0.5

Cl=PL4-6 fC2=PL4311+1.5 ln 0.5b 1 + 1.5 In o0.5

Taper BC Eqn Exact Sol
Description Ratio at x=L Eqn No

Clamped-Free Variable
Beam, Uniform Load 0.5 (13)

W(x) PL L[(2L-x) ln (1-L) + x] x (19)

15



Second-Order Nonlinear

A one-dimensional, steady, second-order, nonlinear

analog of the governing differential equation for transonic

flow over an airfoil is given by

(4 ) = 0 0<x<l (20)

where

*(x) = field variable - potential,

'x = first derivative with respect to x of the
field variable 4, and

'xx = second derivative with respect to x of the
field variable 4.

The boundary conditions are

0(o) = C(
(21)

'Ix (0) C C2

and either

(i) = C4  (22)

or

(1) = C3  (23)

where C1 , C2, C3 , and C4 are constants.

If the differential equation is solved with the two boundary

conditions at x=0 and with either boundary condition at

x=l, the exact solution may be discontinuous. This solu-

tion is illustrated in Fig. 3 for positive constants C1

through C4 .

16



C4'
r C4

C1

0X
0 r 1.0

Fig. 3. Exact Solution to the
General Nonlinear Problem

The coordinate of the discontinuity n is given by

C+C 3 -C 4

= C 2 (24)

The solution to the left of the discontinuity is

OL(X) = C2 x+C1 , O<x<_ (25)

and to the right of the discontinuity the solution is

OR(X) = C 4 (1-C3X), <x<l (26)

The particular problem studied in this work has constants

C1=C4=0 and C2=-C3=1, thus the break occurs at the coordin-

ate n=0.5. This solution is illustrated in Fig. 4.

The equations of the solution are:

17



*L W~ = x , <x<. 5 (27)

R(x) = 0. 5 -x ,.5<x<l

d(X)

0.5

0
0 0.5 1.0

Fig. 4. Exact Solution to
Nonlinear Problem Studied

18



III. Computer System and Program Information

The use of a high speed digital computer is a must

for any study of numerical analysis methods. The numerical

calculations for the linear problems studied in this

thesis were performed with the aid of the ASD computer sys-

tem. This system has two Control Data Corporation central

processors operating in parallel. The CDC 6613 and CDC

CYBER 74 processors both have 13100010 60-bit words of

central memory.

The computer programs written by the author for this

study perform all but three of the manipulations required

to formulate, solve, and analyze the numerical solutions.

These three manipulations are performed by subroutines from

the IMSL code in operation on the ASD computer. The manipu-

lations and associated subroutines are:

1. matrix multiplication -- VMULBB

2. linear equation solving -- LEQTlB

3. vector maximum value search -- VABMXF

All matrices are stored in band storage mode where only

elements on the diagonals are stored. A flow chart of the

main program is included as Fig 5.

19
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Fig. S. Main Program Flow Chart
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IV. Results and Discussion

The results of this study are analyzed according

to the types of differential equations solved. Thus the

results show which method performs best for each class of

differential equations.

In addition to the performance criteria introduced

in Chapter I, several other criteria are also included in

the results, for they show a more complete trend than just

the criteria stated in Chapter I. The entire list of

criteria is given in Table III. When comparing errors

the roundoff error must be considered. Because of round-

off error in the solutions, some entries in Tables A-I

through A-XII are nonzero, but many orders of magnitude

smaller than similar entries. The growth in these nonzero

terms is of great importance for they indicate an unstable

algorithm when the growth rate is exceptionally large. This

phenomenon is discussed later. In all cases, the error com-

pared is a relative error e R defined at a point as

where

* = approximate solution at a point in the domain,

* = exact solution at the same point in the domain,
and

21



Table III

Performance Criteria Used for Comparing the
Numerical Methods for Linear Problems

Table Entry Description of Criteria

Max Nodal Maximuam relative error at any node or
Error grid point

Max Point Maximum relative error at any one of
Error 97 equally spaced points in the

domain--all nodes are included in
this sample

Best Nodal -- Best Maximum Nodal Error for each
Error method and each problem

Best Point -- Best Maximum Point Error for each
Error method and each problem

Execution -- Decimal seconds required to solve
Time the global equations

Formation -- Decimal seconds required to compute

Time and assemble the global equations;
and implement the boundary conditions

CF Convergence factor for a particular
halving of the stepsize

- £(h)
CF = eh

e(h/2)

--the order of convergence is equal
to C. If CF<l.0 the algorithm
diverges

CFN Max Nodal Error convergence factor

CF for smallest stepsize studied
CFP Max Point Error Convergence factor

CF for smallest stepsize studied

Efficiency Maximum efficiency for each method
Point and each problem where efficiency is

the log ([Max Point Error (Formation
Time)5]-l

Number of Number of Elements corresponding to
Elements maximum efficiency

22



(x)1 = exact solution at Xl=0.5 for clamped-
clamped boundary conditions and X =1.0
for clamped-free conditions. 1

These points give an exact solution that is either the

maximum or very near the maximum displacement.

Second-Order Linear--Axial Rod

The results presented in Tables IV through IX indi-

cate a general trend. That is, the higher-order finite

element methods, collocation and least squares, are more

accurate throughout the domain than are finite differ-

ences and Galerkin's method. This is evidenced by small

pointwise errors for the higher-order methods. Least

squares is by far the most accurate and most efficient

method studied for this second-order problem.

Finite Differences and Galerkin's. These two

methods both use a linear approximation for the field vari-

able. This order of approximation is not as accurate as

the cubics even though the solution at the nodes matches

the exact solution identically. For Problems 1 and 2,

the values recorded in Table IV and V for these two methods

correspond to a solution with thirty-nodes. The Best Point

Error indicates the maximum error at one of 97 equally

spaced points in the domain. This quantity reveals an

accuracy of only two digits for these methods. Both

methods proved to be accurate to the order h2 as expected,

for all the second-order problems except for Problem 1
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where the nodal error increased at a rate proportional to

h = h 2 4 . According to Fix (Ref 2:205-215),

the round-off error is bound by the condition number of the

Toeplitz matrix. This upper bound is h 2m where m is the

order of the differential equation. In this case, the round-

off error should be less than Ch-4 ; C=constant. Therefore,

the errors present in these problems are acceptable con-

sidering that the error present is in the thirteenth digit

on a machine with fourteen significant digits.

Collocation and Least Squares. These two methods

give excellent accuracy for Problems 1 and 2 but are

definitely unstable. This is due to the fact that the cubic

approximation with two boundary conditions will solve the

governing differential equation for Problems 1 and 2 exactly

with only one element. By increasing the number of ele-

ments one simply increases the probability that the dis-

cretization error and/or the roundoff error will be

increased. On the other hand, for the four remaining rod

problems the exact solutions are either functions of natural

logarithms or trigonometric functions. These solutions can

not be modeled exactly with a third-order polynomial. For

these four problems the collocation method is only of order

h2 where as the least squares method approaches an order

of accuracy h . It is also interesting to note that the

order of the approximation polynomial does not noticeably
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affect the round-off error. This can be seen from the

results of Problems 1 and 2, where for the collocation

method the error grows at approximately the same rate as

for the finite difference and Galerkin methods. This

observation is also made by Fix (Ref 2:215).

Fourth-Order Linear--Beam in Bending

The results for this system are given in Tables X

through XV. The tables show that for the simple cases of

Problems 7 and 8 the methods using a septic approximation

are exceptionally accurate and very efficient. But as the

problem becomes more complex the septic shape functions do

not guarantee a more accurate solution than is obtained by

the Galerkin's method with cubic shape functions. It is

also apparent that the order of convergence is very

strongly dependent on the particular problem being solved.

This fact is substantiated by examining the convergence

factors CF for the Galerkin method in Tables X through XV.

For the tapered beam the algorithm is only of order h
2

whereas for the uniform beam with a half-sin load the

method is of order h . In Problems 7 and 8 the change from

O(h4 ) to O(h2 ) is brought about by simply freeing the right

end of the beam. As with the Axial Rod, the higher-order

methods are unstable for the cases where the exact solution

is of less order than the approximation function. The

explanation of this is the same as for the axial rod. For

the simple cases the collocation or least squares methods
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give good results with only one element. The collocation

method is the most accurate and efficient method for all of

the problems except the half-sin loaded beams. For these

last two problems the Galerkin method was more efficient

due to the more simple calculations required to form the

global equations. The collocation method exhibited very

poor convergence for the variable beams.

Nonlinear Problem

The nonlinear problem was solved without the aid of

the digital computer due to a lack of time. The two approxi-

mate methods used were the Galerkin method and the colloca-

tion method. Two iterative formulations of the original

differential equation were used as detailed in Appendix F;

each proved to behave quite differently. It was expected

that formulation A, which does not have an iterative forcing

term, would give the fastest convergence. This was, in fact,

the case; formulation A gave the exact solution after one

iteration. Formulation B converged to the correct solution

but took several iterations. The numerical results for this

problem by the Galerkin method are given in Table XVI,

and for the collocation method in Table XVII. The process

of solving the equations using a hand calculator forces one

to place more emphasis on the "efficiency" of the method.

Efficiency in this context could be defined as the number

of keystrokes required to obtain the solution for each

iteration. By this measure the Galerkin technique is

definitely easier to work with.
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The nonlinear problem studied required some knowl-

edge of the physical process that Eq (F-i) is used as an

analog for. The boundary conditions chosen are mathe-

matically convenient but not physically desirable. The

condition f(l)=0 implies that the function itself goes to

zero at x=l. A better choice for the boundary condition at

x=l would have been 0 (1)=C4. This implies that the func-

tion is nonzero at the boundary. Another aspect of the

problem which must be understood is the condition that a

jump in the first derivative of 0 must occur in the flow

field. The function is continuous but the derivative

changes discontinuously, which models the idealized behavior

caused by a shock in the flow field. This behavior requires

an approximation to the field variable which has first

derivatives as nodal parameters. Such an approximation dis-

qualifies linear shape functions even though the exact solu-

tion can be represented by two straight lines.
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V. Conclusions

One of the objectives of the study was to determine

if comparisons made by Houstis (Ref 5) based on a second-

order, two dimensional, constant coefficient problem set

would hold for a set of higher-order variable coefficient

problems or nonlinear problems. In searching for an answer

to this question several other conclusions were also

obtained. The conclusions of this study are:

1. For the second-order linear problem studied,

the least squares method, with Hermite cubic polynomials,

is more accurate and also more efficient than the colloca-

tion, Galerkin, or finite difference methods studied. The

least squares method outperformed the other four methods for

all six cases of the axial rod studied. The most heavily

weighted performance criteria were efficiency and accuracy,

in that order.

2. For the fourth-order linear problem studied,

the least squares method with Hermite septic polynomials

was only used for the constant coefficient case with a con-

stant forcing term. In this case least squares performed

equally as well as collocation, with the same interpolation

functions; and significantly better than finite differences

and Galerkin with lower-order interpolation functions.

For the variable coefficient case collocation was slightly
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less efficient than the other two methods. In general,

collocation was the method of choice.

3. For the nonlinear problem the Galerkin and

collocation methods both perform similarly. The number of

calculations required for each iteration was much greater

for the collocation method than for the Galerkin method.

The second conclusion obtained by Houstis varies

significantly from those of this study. This difference

can possibly be accounted for by the fact that Houstis used

a numerical integration scheme for the Galerkin and least

squares methods. Since the methods were formulated with

polynomials, the integration is trivial and numerical inte-

gration is not called for.
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Appendix A

Numerical and Graphical Data

This appendix contains all of the numerical results

for the linear problems. These results are given in

Tables A-I through A-XII for which the headings are defined

in Chapter IV. Each table presents data for one specific

problem as solved using the various numerical methods.

The graphical data shows two aspects of the study.

The first six graphs are representative of the way in which

the methods approximate the solutions to the various prob-

lems. The next twenty-four graphs are plots of the relative

error at 97 points in the domain. This number of points

was chosen because it insures that the plotted solution will

not "skip over" any nodes for the values of E studied.
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Appendix B

Finite Difference Expressions and Sample Problems

The finite difference method uses difference quo-

tients to approximate the derivatives in a differential

equation. These quotients are formed at N+l (a finite

number) grid points in the problem domain. For the one-

dimensional problems in this study the domain is discretized

as shown in Fig B-1.

$ (x)

0 1 2e€N-l ON

-h 0 h 2h eh (e+l)h (N-1)h Nh=L

Fig B-1. Discretization of One-Dimensional Domain
for Finite Difference Method-

Near the boundaries the difference quotients may require

that a "false" node exist outside the domain. This situa-

tion can easily be handled if symmetry about the boundary
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is assumed (Ref 8:143). This situation is illustrated in

Fig B-2.

= _ -O 01 *0 oi 2

-h h 2hJ
x=O

by symnetry i= i

Fig B-2. Symmetry of Approximate Displacement
About a Clamped End

Axial Rod

The governing differential equation for the axial

rod is

(A(x) E -= -F(x) (B-l)

which after differentiation becomes

A(x)E du 2 + dA(x) Ed = -F( x) (B-2)
du2  dx dx

The two second-order central-difference quotients needed

are
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D2 yi=) (YJ-I-2yj+Yj+I) + (-2hyiIV) (B-3)
h h2  ~- jjl12

D (yi)= h (-Yj-I +Yj+I) + (_h2yjIII) (B-4)

Substituting Eqs (B-3) and (B-4) into Eq (B-2) gives the

result

[-A(xj_l)-4A(x j ) + A(xj+l)] uj_1 + 8A(xj)uj

4F(x )h 2
"I+[AlXj-,ll-4A(xj -A(Xj+l)]Uj+l=-- E

j=0,1,...,N (B-5)

For a uniform rod Eq (B-5) reduces to

F(x.)h
2

uj-1 UjEA- + 2u -u 41  E

j=0,1,...,N (B-6)

where F(x) P for the uniform load case and F(x.) =

P sin (- ) for the half-sin load distribution, and
L

A(xj) = (l-a t-). In this study only two boundary condi-
) L

tions are studied, they are:

u(xk) 0 - zero displacement (B-7)
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V

du
Ak (xk) = 0 - zero axial force (B-8)

To account for the boundary conditions, the equa-
tions associated with nodes near the end of the rod are

modified as follows:

1. For a clamped end at Xk=O, then u0=0 in row 1

and in row 2

4F (x )h 2
8A(xl1)u + [A(x 0 )-4A(x 1 )-A(x 2 )]U 2 = E (B-9)

2. For a clamped end at Xk=L, then UN=O in row

N+1 and in row N

8A(xN_l)UN_ 1 + [A(xN_I)- 4A(xN_ 2 )-A(xN_3)UN_2 =

4F (B-10)

E

3. For a free end at xk=L, then in row N+1

4F(xNlh 2
8A(xN)UN - 8 A(xN_l)uN_1 E (B-Il)

E

Sample Problem B-b. A clamped-free uniform rod is

loaded with a half-sin distribution of uniaxial tension.

The rod is discretized with five grid points. After the

boundary conditions are applied, the system equations become
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8 -4 0 0 u1  .18

-4 8 -4 0 u2  .25

0 -4 8 -1 u3  .18

0 0 -8 8 u4  0
4

The approximate solution compared with the exact solution

is

approximate exact

UI  15088 U1  .15122

u2 PL2  .25758 U 2 pL 26048

u3  .30178 u3  AE .31038

u4  .30178 u4 .31831

Beam in Bending

The governing differential equation for the beam

in bending is

-- I(x)E AL = ~x (B-12)
dx 2  dxN

After differentiation it becomes

I(x) -w + 2 dI(x) d3w + d 2I(x) d 2 w = F(X) (B-13)
dx4 dx dx3  dx2  dx2

The fourth-order central-difference quotients needed are

D(yj) -) + (-L h4yjV) (B-14)
l 23
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D2(yj) 1 1 1 VI

12h 2  j-2+6yj-30yj+6yj+Yj+2
) + (t) (B-15)

D3 (yj) 2 Yj 2+2yj 1 -2y+yj + (-L h2 y V (B-16)=(j 3y )j22j ~'Y+
2h3

D4(yj) (h._-4Yj + - h~yjVI) (B-17)

If the moment of inertia Ix) is assumed to be a constant

or a linear function then Eq (B-14) simplifies to

1(x) d- w + 2 dI(x) d3w = F(x)
dxi dx dx3  E

Substituting the central-difference expressions for the

derivatives gives

I (x j 1 )wj 2 -2[I(xjl)+I(xj)]wi_1 + [I (xj i)+4I (xj)+I (xj+)]wj

-2..(x.)+I(x )w + F(x)h I

Ij j+l j+l 'xj+2)wi+2 E

j=0,l,... N

where F(x.) P (constant) for the uniform load distribu-
J TX.

tion and F(xj) = P sin (L1) for the half-sin load dis-

tribution.

The boundary conditions modify the set of system

equations as follows:

1. For a clamped end at xk=0, then w0=0 in row 1,

and
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[21(x 0)+41(x 1)+I(X 2 )]w I-2[I(x 1 )4:L*X 2 )]w2

+I(x )w =F(x1 )h 4in row 2, and
2 3 E

-2[I(x 0 )+I(x 1 )]w1 +[I(X 2 )+41(x 2 )+I(x3 )]w2

F (x)h inro4
-2[I(x 2 )+I(x 3 )]w3 +I(x 3 )w4  in Eo

.2. For a clamped end at-xk=L, then WN=O in row N+l,

and

I (xN-2)wN-3-2 [I (xN-2) +1 N-1)IwN-2

+ [21(xN)+4 (xN1)+I(xN2)]wNil= F E~)' in row N,

and

I(xN-3)wN-4 2 [1I(xN-2)+I (xN-3)IwN-3

+ [IxN )4(xN-2) +1(xN-3) wN- 21 (N-2)

+ I(xN-1)lwN-1 =F(xN E)h 4 in row N-i

3. For a free end at xk=L, then

21 (xN-l)wN-2-41 (xN l)wN_1+2I ~xN)wN =E

in row N+l, and
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I (x N2)wN.3 2 (I (xN 2 ) +(xN 1 ) IWN 2

+11(N-2) +4 1(XNl1)]WN1~ .2 1(xNl)wN in row N

Sample Problem B-2. A clamped-free uniifoarm beam

is subjected to a half-sin transverse load distribution.

The beam is discretized with five grid points. After the

boundary conditions are applied, the system equations

become

7 -4 1 0 0 w 2  0. 002762

-4 6 -4 1 0 w3  0.003906

1 -3 6 -4 1 w 4  0.002762

0 0 2 -4 2 w 5  0.0

The approximate solution compared with the exact solution

is

approximate exact

w .00943 w 2  0.00831

- PL 4 0.02829 w 3 L 0.02729

w4IE 0091 w4IE 0.05021

w50.07154 w50.07385
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Appendix C

Derivation of Finite Element Equations for the

Axial Rod with Sample Problems

The governing differential equation for the axial

rod under the influence of an uniaxially distributed force

is given as

dx A(x)E d = -F(x) (C-1)

Discretizing the domain into E elements with E+1 nodes,

the solution can be approximated as

u(x) = N(x)u. j=I,2,...,M

where M = number of nodal parameters, and the repeated

index implies summation.

The differential equation will not be satisfied

exactly. The residual error E is thus defined as

C(xW ~ A (x) E ' uj + F(x) 0 0

j~l,2,.. ,M(C-Z)

The method of weighted residuals (Ref 12) forces the residual

error to be zero, in some weighted average sense, over the

domain n. For each method this is achieved by performing

the following integrations.
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Collocation:

.L

=10 e(x )} (x-x i)dx = 0 (C-3)

Galerkin:

L

I =f E(x)Ni(x)dx = 0 (C-4)

Least Squares:

I =f0 L(x) ai(x) dx = 0 (C-5)

Collocation Method

The evaluation of the integral for the collocation

method is carried out by first discretizing the domain into

.elements, each of length h. The integral is thus:

E [eh

I = f (x)6(x-xi)dx = 0 (C-6)

e=l "(e-1)h

This integral can be simplified by using local coordinates

x, where

x = (e-l)h+x, 0<x<h (C-7)

O<x<L
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The E elemental integrals with this transformation become

very similar; that is:

Ie = fh .(xmi x- = 0 (C-8)

0

Substituting Eq (C-2) into Eq (C-8) along with the coordin-

ate transformation gives
.4

Ie h dx [-

j=l,2, .•. m
(C-9)

where N. (x) are the local shape functions (tabulated in

Appendix D) and m is the number of nodal parameters per

element.

Integration of Eq (C-9) gives

= e [A E uj] +F (x) 0de dx xx

j-l,2,... ,m (C-10)

Suppose the area A(x) is assumed to vary linearly in the

domain, then it can be expressed as

A(x) = A 1 - [(e-l) + i1 (C-ll)
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where

A = area of element at left end (x=0), and

a = taper ratio (O<a<l.0).

Substituting Eq (C-11) into Eq (C-10) and differentiating

yields

d2 N" dN.
I i{1 - [(e-l)h+x] AE --- u. - AE J u.+
e e dX 2  J L dX I

X=X i

j=1, 2 , . . . ,

(C-12)

d2N.
where N. must be such that -1- is non-zero. In this thesis

dx2

N. is chosen to be the cubic shape functions associated with)

the C1 line element (see Table E-I). For this class of

functions there are four nodal parameters per element

(m equals four). With cubic shape functions (Eq (C-12) can

be written for element e as

Kij u. + Fi = 0 i=I,...,4

j=l,.. ,4

e=l, ... ,E (C-13)

where

Kij = elemental stiffness matrix,

u = vector of element nodal parameters, and

F. = vector of element equivalent forces.
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In the local coordinate system, the elemental stiff-

ness matrix has elements of the form

K1 = - [(e-l)h+- --- + 6

whr i=I2,, anL hex hav ee c he asteeqal

hi h2
space pn xi Xi ( x\(C-14)[i i~i (e-l)~x~] [-4+6 x~. - 1- +3~)

K = ~l~ [e-1) h+xb[-2+6 a2 [2- + 3i4 h IL L hi L h (hf-

where i=1,2,3,4 and the x.i have been chosen as the equally

spaced points x. - [0, h, 2h hi.

The choice of equally spaced points over Gaussian points

was due to the conclusion of Houstis (Ref 5:327) "that

equally spaced points give slightly better accuracy for

rectangular domains." Theoretically the Gauss points give

better results according to Prenter (Ref 10:304-314). He

showed that "collocation at Gaussian points using a basis

of piecewise cubic Hermite polynomials gives an order h
4

algorithm for approximating the unique solution x(t) to the

equation

-x"(t) + G(t)x(t) = f(t) a<t<b

x(a) = x(b) = 0
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For a uniform rod the taper ratio at equals zero.

This greatly simplifies the stiffness matrix.

Thus:

6 -4h 6 -2h

[]=AE -2 -2h 2 0 ( 5
h 2 0 -2 2h

6 2h -6 4h

In the local coordinate system, the local nodal unknowns

are related to the global unknowns as follows:

local global

U 1  u (0) U 1e- u((e-l)h)

2 x dx (C-16)

u3 u (h) ue+l u(eh)

d u (h)j Ue+2 L(,h)
dx dx

The local and global force vectors are related in the same

manner.

local global

F 1  F (0) e-l F((e-l)h)

F FhFF(-lhh32 - - F e 0 = el4hh/ (C-17)

F F(2 h) F((e-l)h+2h/3)3 3Fe+l

F4 ) LF(h) F e+2  F(eh)
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where F(x) = F(x) - P (constant) for the case of uniform

load; and F(x) = P sin (P) for the case of a half-sin load

distribution.

When elements are connected together the shape

functions chosen guarantee continuity of the function and

its first derivative in the interval (0,L). Therefore,

when forming the global equations, the local equations are

added so that their local nodal parameters coincide with the

appropriate global parameters as defined in Eq (C-16).

Sample Problem C-1. A clamped-free uniform rod

with a half-sin load distribution is discretized with two

C line elements. The nodal parameters are as illustrated

in Fig C-1.

irx
Psin 0

A,E

"'---7 ' 0 -
1 L L 3

du_(l \- U(X 3
2" (X) u4 dx (x21 6 x 3

Fig C-1. Global Illustration of a Clamped-Free Uniform
Rod Approximated by Two Cl Line-Elements with

a Half-Sin Load Distribution
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The unreduced global equations are

6 -2L' 6 -L 0 0 u 1  sin(0) + 0

-2 -L 2 0 0 0 u2  sin(--) + 0

AE 2 0 4 -L 6 -L u3  sin(jk) + sin

2 6 L -8 L 2 0 u 4  sin(-L-) + sin~y

0 0 2 0 -2 L u 5  0 + sin

0 0 6 L -6 2L u 0 + sin (70

These equations can be reduced by using the boundary condi-

tions. At the left end, the displacement u1 is zero; and

at the right end, the axial force AE u6 is zero. Therefore

rows one and six and the corresponding columns can be

eliminated from the system of equations. The result is

-L 2 0 0 u2  .5

0 4 -L 6 u3  1.866
4AE -P

L 2  L -8 L 2 u4  1.866

0 2 0 -2 u5  .5

The approximate solution compared with the exact is

approximate exact

u.6443, lu .6366~

u3  .2597 u 3  .2605

u4 .3222 u4 AE .3183

u5  .3222) u5  .3183
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Galerkin Method

Galerkin's Method is expressed by Eq (C-4). That

is:

L

dx dx

Integration by parts of the first term

=~0 Ax) W .E. d1~ u.dx + AWxE K- N + x)N dx =0

j=1,2,...,M (C-18)

L

The boundary term AWxE du N. vanishes for both cases of

10

boundary conditions studied in this thesis. Therefore

Eq (C-18) becomes

fL dN N

I f A(x)0E - ~~~dx u~ j F(x)Nidx =0

0

Since the domain is discretized into Eelements the inte-

gral I can be written as
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FrW

I= e = JA(x)E d dN - F(x)N0

e=1 e=l f(e-l)h

i=I,2 , . .. ,

(C-19)

For these integrals to exist the shape functions N. must

be at least Co continuous. They are chosen in this study

to be the linear shape functions associated with the Cc

line element described in Appendix E. For the Galerkin

method Eq (C-11) is more conveniently expressed as

A(x) = (I - )AL + A (C-20)

where

A = Al L(ewl)h]

Equation (C-7) can be used to transform Eq (E-19) to a

local coordinate system. With the substitution of

Eq (C-20) the element integral Ie becomes

0h

Ie fh I(l (i ) L + (h)AR E [1 l ue+ l

F () dx = 0

e=l, 2,...,. (C-21)
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where F(=) P (constant) for the uniform load distribution;

and P(i)= P sin (L[e-1)h+7]) for the half-sin load dis-

tribution. For the half-sin load distribution Eq (C-21)

becomes

=A+AR + PLE inL sn (e 1)
e 2h 1 u (sin .e --sin

- (e-l)

E
+ PL

COS =_ 0

e=l,2,...,E (C-22)

For the uniform load case and constant area A, Eq (C-21)

becomes AEl e L I 10
Ie = - 1+ 1  2

e=l,2,...,E (C-23)

These equations are identical to the equations for the

standard finite difference method detailed in Appendix B.

Sample Problem C-2. A constant area clamped-free

axial rod is loaded with a half-sin distribution of uni-

axial force. This problem is approximated with two C0 line

elements as shown in Fig C-2.
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Trx
P sin (Tx

L

aE
& __

~1L2 L 3 c--u2 ., 2 U

Fig C-2. Global Illustration of a Clamped-Free Uniform
Rod Approximated by Two Co Line Elements with aHalf-Sin Load Distribution

The assembled global equations are

1 -1 0 u 1-1 +0 1+ 0
2AE PL L-i 2 -1 u2 L= 1 + + +a 0 + 0

0 -1 1 u3 . 0 0 + 1

Since u =0 by virtue of the boundary conditions the equation

reduces to

2A E [ 2 -1] 32 P L 1 4 5 8L 1 1 U 3  .11567

The solution is

I 1 PL .2605

u3  AE .3183
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which matches the exact solution.

Least Squares Method

The least squares technique of forming finite ele-

ment equations relies on the evaluation of Eq (C-5). Sub-

stituting Eq (C-2) into Eq (C-5) yields

Ld dNi

S=.,[A(x)E dx uj] + F(x) x [A(x)E - =dx 0

0
i=l,2,... ,M

j=l,2,...,M (C-24)

Multiplying and differentiating terms in the integrand

gives

I E2f LA 2 (x) i d + 2' dA(x) i dx uj
dx2  dx2  dx dx dx

d. dA(x) dN[

+ LF(x) A(x)d 2N i + dx---d dx = 0
d 2 dx 

i=1,2,...,M
j=l,2,... ,M (C-25)

This integral can be written as the sum of the ele-

mental integrals in a local coordinate system. The trans-

formation from global to local is given by Eq (C-7). The

global shape functions Ni could also be transformed, but the

linear shape functions of Table E-l have all the required

properties of the local shape functions desired. To

simplify the albegra the derivatives of the shape functions
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are written as

dN. i B~ /i 2

dx= h \Ti + B

d2 ' ~ h

where

1
a 10 R , 0, 01

A. _L f~-6, -4h, 6, -2h]

B. -L (12, 6h, -12, 6h]
1 h2

The final result after integrating the polynomial terms

with FWx P (constant) can be written for element e in

the form

=e K.jui., + F = 0 i12...

j=1,2, ... ,

e=l,2,...,E (C-26)

where

K =EIa a A2-AAAR]

+ (a .A .+Aic.) E-ALAR+AR2 ]

+ ((Y B.+Ba )[.AAt2

+ AiAJ[A (20AL2 -40 ALAR+80AR2 )]
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+(A B +Bi (5A2 -20ALAR+ 4 5 AR 2 1

+B.B.E-L (2A.J2-9AA+27A9)d
)60

i-1,2,3,4

j-1,2,3,4

F - P [i(AR-AL) + (A + 2 Bi)A]

and

Uelr ~ (e-l1)

a e-1 u -Ue du llie-1)
dx

U+l W

u +2  dju Le

For a uniform rod the elemental stiffness matrix K is

simplified considerably due to the fact that dA(x) .0dx

Thus Eq (C-26) has the following terms for a half-sin load

distribution:

12 4h -12 6h

A2 E 6h 4h2 -6h 2h2

K1 hs -12 -6h 12 -6h

6h 2h2 -6h 4h2
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'6 12E(CL +CO) + -f - (SL-SO)

-2 (CL+2C0) + §E (SL-SO).

F. - AE -

6(CL +CO) 12E-~ (SL-SQ)

6E
-2 (2CL+CO) + - (SL-SO).

where

CL =cos 11e CO Co i(e-l)

SL =sin 2re SO sinriei

Sample Problem C-3. A uniform clamped-free rod is

subjected to a half-sin distribution of uniaxial tension.

This problem is discretized into two elements as illustrated

in Fig C-1. The reduced global equations as formed by the

least squares technique are

4h 2  -6h 2h 2  0 u 2  .11 + 0

-6h 24 0 -12 u3  2.1 +2.1

L3 2h? 0 8hi2 -6h u 4  -1.2 + 1.2

0 -12 -6h 12 u 5  0 -2.1

The solution to these equations is
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U .6366
2

u3 PL_ .2605

u 4 .3183

which~ ageswt 5  .3183

whic agees iththe exact solution.

118



Appendix D

Derivation of Finite Element Equations

for the Beam in Bending

A beam in bending has a fourth-order linear differ-

ential equation governing its transverse displacement. The

equation is

d2 dwx)
-- I(x)E F W~x (D-1)

dx 2  dx 2

If w(x) is approximated by w(x)=N.(x)W. ; where j=1,2,...,M;

the residual error in the discretized domain will be of the

form

W(x) = - I(xE d wj - F(x) # 0
dx2  dx2  i

i=i,2,...,M (D-2)

The method of weighted residuals is also used for this prob-

lem to derive the finite element equations. The integral

equations associated with each of the following finite ele-

ment techniques are repeated here for convenience.

Collocation:

I =1' £(x)S(x-xi )dx = 0 (C-3)
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Galerkin:

fLI c (x) N Wxdx =0 (C-4)
* I 0

Least Squares:

1L )acx dx-0 (C-5)

01

Collocation

Substituting Eq (D-2) into Eq (C-3) yields

fLd N d+2(X dI(x) +N d21(x N

LX dX4 dx dX3  dX2  dx

-~) 6(x-x i)dx = 0

J=l,2,...,m (D-3)

The transformation from a global coordinate system to a

local coordinate system is identical to that for the axial

rod as detailed in Appendix C. In this study the moment

of inertia I(x) was assumed to be either constant or linear.

That is:

INx) =I(l-t-.X) (0a<l.0) (D-4)

Therefore

dI(x) a c
dx L

120



and d2 I(x) = 0 for all x
dx2

Thus the integrated Ie associated with element e becomes

Ie =[ -[(e-l)h+x] IE d- d IE W.-Fx60 0
di' L dx3  I I

X=Xi

* i=l , 2 ,. .. ,

* )-l1, 2,... ,m
e=l,2,... ,E (D-5)

where the local shape functions N. must now be such that

d 4N.
dd.N is non-zero. The functions chosen are the septic
dx4

shape functions (m=8) for a C3 line element. (See Appendix

E.) The elemental equation for element e can be written in

the form

I e = Kijwj - Yi  0 (D-6)

where Kij is defined for section as Kij + j ; Kij

is the part of the stiffness matrix associated with the

d 4N.
terms; and K.. is the part associated with the

dR4 1)

d3N.
Z terms.
dx3

-~ x
Let I i 

f  - [(e-l)h+x and x = R then:
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(4) [-840 + 10080x 25200x 2 + 16800xs]

K 2  - [-480 + 5900x- 12960x1 + 8400x 3 1
i2a

I E

K 3 h [-120 + 1200x - 2700x 2 + 1680xs]

S(at) 1i

K4  =h -16 + 120x - 240x2 + 140x'I

(D-7)

( -iE [ 840 - 1008Ox + 25200x
2 - 16800x3 ]Ki5 h 4

Ki6 - (-360 + 4680x - 12240x 2 + 8400x3 ]

Ki 7  = 60 - 840x + 2340x 2  16800X3]

(4) 1 i E
Ki 8  ( -4 + 60x- 180x 2 + 140x,]

and

K 1 (3)- 2axE [-840 + 5040x - 8400x2 + 4200x']K1l h 2

(3) - 2axE (-480 + 2700x - 4320x2 + 2 10 0x'a
K1 2  h h

K() - 2mxE (-120 + 600x - 900x 2 + 420xS]

Ki3  =

K1 4  -2oLxEh [ -16 + 60x - BOx 2 + 35x 9 ]-3aEh

Is) 2cxE 840 - 5040x + 8400x 2 + 4 2 0 0 x'] (D-8)

Ki 5  h 2
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Ki6  1 h [-360 + 2340x - 4060x2 + 2100x']16 h

(S) - - 2axE [ 60 - 420x + 780x 2 - 420x ]

K(8) - 2axEh [ -4 + 30x - 60x 2 + 35x']K i8 -

The force vector Fi is given by Fi = P (constant),

i=1,2,...,8, for the uniform load distribution, and

F= P sin (e-l)h + xi for the half-sin load distribu-

tion. As with the axial rod, the collocation points xi

have been chosen as the equally spaced points; xi = i) h,

i=l, 2,... ,8.

Galerkin

For the Galerkin method Eq (D-2) is substituted

into Eq (C-4) and the stiffness term is integrated by parts

twice. The result is:

I = 0 (El(x) d2N d 2N i  - d 2w dN i L

0 dx2  dx2  d x2 dx

+ (EI(x) N F(x)N.dx = 0
+x (EI x -a- 1 0 JO I

i=1,2 ,. .. ,M

j=l,2,...,M (D-9)

The two boundary terms

EI( x) d2w dNi L

dx2  dx
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and L

EIix)- w + E DI(x) d N
dx3  dx dx2

0

both vanish for the boundary conditions studied. The fol-

lowing conditions give this result. Since the cubic shape

functions Ni satisfy the clamped end geometric boundary

conditions (w = = 0), the boundary terms vanish for

clamped ends. The boundary conditions for a free right

end are

I(x)E dw d x w =0
dx 2 lx =L =  dx3

x = L

These conditions correspond to zero moment and zero shear

force respectively. Therefore if the right end is free

the boundary terms again vanish. Equation (D-9) is thus

simplified; and if the same coordinate transformation is

performed as for the axial rod, the result for element e

can be written in the form of Eq (D-6) where

12 2h -12 6h

(IL+I R)E 6h 4h' -6h 2h2  (D-0)
2h3  -12 -6h 12 -6h

6h 2h2 -6h 4h2

and for the uniform load distribution F(x) = P (constant)

r h/2
Ih2 /6F. = P (D-II)
h/2

-h 2 /6
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The half-sin load distribution F(x) = P sin (IX gives an

equivalent force vector of

2 3

6(-) (CL+CO) + CO + 12(-) (SL-SO)

Fi P 2 (-- ) h(CL+CO) + 6L EL(SO-SL) - -- SO
iTF P3 r

2 E
6(-) (CL+CO) - CL + 12(-) (SL-SO)iT IT

E 2 h- L 2

2(h--) (2CL+CO) + -- (SO-SL} + L SL

where

CL = cos-2 SLsin -E E

CO = cos i (e-l) SO = sin r (e-l)

Least Squares

For the least squares method Eq (D-2) is substituted

into Eq (C-5) and the result is:

SdI4x) .d 3 xN 2 d2N.j

= IEI(x) I + E N  + E j(x)
dx4 dx dx3  dx 2  dx2 J

d N' ~ x d3N" 2 I 2x)

-F(x) EI(x) i + E dI(x) i + E d x dx = 0
dx4  dx dx 3  dx 2  dx2

(D-13)

Since I(x) 1(l- ) , d 21(X) 0
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If Eq (D-13) is written in local coordinates for a domain

that is discretized into E elements, the integral for ele-

ment e is

f[EIic -- J + E dI(x) !.a EI(X) dN
di4 di~ dx~J dx4

+ dI(x) dx=
d+ dxd3

e=1,2,...,E (D-14)

For this method the septic shape functions are chosen (see

Appendix E), and let

d3N. 2- +-3

dj 3  1 2 i 3 i 41i

-a =-A. +B x + C x 2 + D x 3  (D-15)

where X = and

a. = [0, 0, 0, 1, 0, 0, 0, 0]

A. = -L [-840, -480h, -120h 2 , -1619, 840, -360h, 60h2 , -409
1 f

B. (10080, 5400h, 1200h 2, 120h', -10080, 4680h, -840h 2, 60h9]
h1
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C. -_ [-25200, -12960h, -2700h 2, -240h 3 , 25200, -12240h, 2340h2 , -180h 3 ]h

(_- [16800, 8400h, 1680h2, 140h3 , -16800, 8400h, -1680h 2, 140h']

Let I(R)= ILI - + I R

Then Eq (D-14) can be written in the form of Eq (D-6)

where

Kij = Eh 28(IL2-2ILIR+IR2 )tia

+ (IL 2 -4ILIR+IR 2 ) (aiA+A i j)

1 (IL 25 I 2 +4I ((XBj+Bicj)

3 L ILR+4 R ijBi+Bic

+ I (IL 2 _ 61 I +5, 2 ) (aiCj+Ci a)
6 L L R R 1) 1

+ 1 (IL 2 -7ILIR+6IR )(aiDj+Dicja

+0 1 L 3 L R R )AA

+ (IL 2-31 1 +3 I2 )AiA

+ 2i IL_ 3 ia+4I2)B~

15 L LR 5 R i C

+ (_L3 1 2 5 1 1 +1 1 2 )cC
315 L 21 L R 63 Ri

+ 2 11+I 12)D D
56L L 8 LR+ 4IR

+ ( 2_ 4 iL + .3 2) (AiBj+BiAj)

1 25 2 +CiA
6 - 6 ILIR+IR )(AiC j
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S 2 LR 4 1 ) (AiDj+DiAj)

(40 L2 L84 4 I1L3 1 2. 17 1 . BC+
2L 45LIR+ 9 IR )

1_9 I3_2 ) (B.D.+D.B)
42 'L 84 1 L R +7 'R

+ 2- 29 1j~ 1 + -L 1 2) (C D+D C11 L 168 L R 16 R i JiJ

i=l , 2 , . . . , 8

j=1,2, . .8

e=1,2,... ,E (D-16)

The force vector for the uniform load case F(x) = P is given

by

A.
F Ph (IR-IL)2a + (31R-1 L )

IRIL ai 3 R'L~ 2

4R' B. C. i
(4 i+ ( 5 1 RL 12

+ 4R-IL R +5R-L 1-2 + 6R-L) 2-0

i=i ,2 ,. .. , 8

e=l,2,...,E (D-17)

The uniform beam has IL=IR=I and a=O; therefore Eq (D-16)

reduces to

K.. = E2h A B + (AiBj+BiA) +i (B.B+AiCj+CiAj)

+ C +C.B.+A.D.+DiA ) + (C.Cj+BiD.+DiB.)4 i € j } i i i- . . .
+-(C D.+D.C.) +- D .D.

j=1,2, .. 18

e=l,2,... ,E (D-18)
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and Eq (D-17) reduces to

F =PIh Ai + Bi +  Ci + iDif (D-19)

Substituting the appropriate constants in Eqs (D-18) and

(D-19) gives the result tor Ie shown in Eq (D-20). The

half-sin load distribution results in an equivalent force

vector which was quite unexpected. The force vector is

given by the following equation

F. = K. .E.
j=l ,2, ... ,8

where

Ki = uniform beam stiffness matrix from Eq (D-20)

and L3  zr(e-l)
(E) sin (-

.7r

L 2 o w(e-l)
E

L sin 7 (e-l)IrE

PL - cos (e-1)
Ej = T

L ir
(k) sin e

( s) s ire

~E
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Appendix E

Shape Functions and Several Derivatives

The shape functions used for a particular finite

element technique determine the nature of the approximate

solution (Ref 6:131). These functions as used in this

study can be formed from the familiar Hermite Polynomials

(Ref 6:152-155). Unfortunately, this method does not con-

vey the physical nature of the functions.

A linear approximation of the field variable

within an element is given by 4(x) = [i x]I a For

a line element, as depicted in Fig E-l, the nodal parameters

01 and 02 are given by

I [1 0] jal

021 h a 2

42

Fig E-l. CO Line Element
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Inverting this relation and substituting a1 and a2 into

the approximation equation gives

[1 1 01 1

The product of the two matrices is defined as the vector of

shape functions N., where j denotes the shape function

associated with nodal parameter j. The approximation equa-

tion is now of the form:

- m
O(x) = --Nj~ j

j=l

where m = number of nodal parameters associated with

the element.

This type of element is said to have Co continuity because

only the function is continuous between two connected ele-

ments. The linear shape functions are given in Fig E-2.

These shape functions exhibit properties of the "kronecker"

delta function. That is:

1 i=j

N. (xi) = 6.. i3 i l 0 i~oj

A line element possessing C1 continuity will have

continuous first derivatives of the field variable between

two connected elements. This requires a cubic approxima-

tion of the field variable. By duplicating the process

followed for the linear shape functions one can transform
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N~x)

2h

0h

Fig. E-2. Linear Shape Functions (Ref 5:154)

the equation (i) = a +a x+ ax 2+ ax3 into1 2 3 4

j =1

where the nodal parameters 'f.are illustrated in Fig E-3.

011

Fig. E-3. C Line Element
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The cubic shape functions associated with the C line ele-

ment are given in Fig E-4. The linear and cubic shape func-

tions are summarized in Table E-I.

N¢ 

,N
dN 2

-=1, 2X

/ dN
dx 4__

~~~~~7dx

x

~~ N4

Fig. E-4. Cubic Shape Functions (Ref 6:154)

The highest order element used in this thesis is a

C3 line element. It allows continuity of the third deriva-

tive of the field variable between elements. The approxi-

mation equation is 4(x) = a + a x + a x + a 7P + a x

+ a6x + a7 x6 + a8R7 . Since there are eight undetermined

parameters the C3 line elementmust be defined with four

nodal parameters at each of its two nodes. Thus the

vector is
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Table E-1

Linear and Cubic Shape Functions with
. !Derivatives of Specific Interest

(a) Linear: 0 < x - < 1

*i

x T JT (i1
,. , x dX - h

(b) Cubic: 0 < x < i

1- 3X + 2X3' [2x-1]
rh2

hfx-2X2 + X3, T 2aN [ 3x-2]
3x2 - 2x -

-[2x-l]

h 2

h[-x2 + x3 ] -!- [3x-l]
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01 0(0)
%(0)

03
* I 04

0 4 € , (0 )

05 $(h)

05 €7J €,(h)
06 xx

'7 0, i- (h)

8j ~ xxx

The third and seventh parameters are proportional to the

bending moment in a beam at x=O and x=h. The fourth and

eighth parameters are proportional to the transverse shear

force. The septic shape functions are given in Table E-II,

along with their fourth derivatives. Shape functions N1

through N4 are shown in Fig E-5; the other four shape func-

tions are simply a reflection about the point x-h/2.

0K

N (x)

, N 1

N 2

N4

Fig E-5. Septic Shape Functions (Ref 5:155)
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Table E-II

Septic Shape Functions with Derivatives
of Specific Interest

1-35x4 + 85x5 - 70x 6 + 20x7]

h[x-20x4 + 45x s - 36x 6 + 10x 7 ]

h2j[x-5xh + 1Ox5 - + 2x7 ]

2 2 x

h3[x -9x + - x + 1X7

=NI 6 6 +x

35X4 - 84x s + 70x6 - 20x']

h[-15x4 + 39x s - 34x 6 + 0x 7 ]

h2r 5 x4 - 7xs + 136 72x'

h x + x -Txl1 + ix]

-[-840 + 10080x - 25200x2+ 16800x 31

1 [-480 + 5400x - 12960x 2 + 8400x']

(-120 + 1200x - 2700x 2 + 1680x31
h 2

1T d_N T -[ -16 + 120x - 240x2 + 140x3 ]

hs

1[(-360 + 4680x - 12240x2 + 8400x 31

h3

1_ 60 - 840x+ 2340x 2 - 1680x5 ]

h2

1[ -4 + 60x - 180x 2 + 140xS]

where 0 < x = <1

137



Appendix F

Derivation of Finite Element Equations for the

Nonlinear Problem with Sample Calculations

The differential equation given for the nonlinear

problem studied is

x x = 0 0<x<l (F-i)

with the boundary conditions

0(0) = 0

(0) = 1

O() = C1 (constant) (F-2)

where the subscript x implies differention with respect to

the independent variable x. Equation (F-l) can be stated

in two different but equivalent forms. These are

A) x- 2 ]x = 0 (F-3)x 2 xx

B) -- (1- x) 2 ] x = 0 (F-4)

The domain was discretized into two elements of

length h1 and h2 *respectively, with the global nodal param-

eters given in Eq (F-5). The two elements are joined at a

double node as shown in Fig. F-1.

1
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f+

d(0) (hl)

df (0)
02 dx 6 dx

(F-5)

3= 0 (h1  07 = € (h1+h 2 )

de (hl-) de ()04 dx 8 = dx

where 03 and 04 are the approximate solutions to the dis-

placement (potential function) and the slope (velocity)

respectively at the right end of the first element; and

05 and 06 are the approximate solutions at the left end of

the second element. The discretized domain is shown in

Fig. F-I.

¢3 C4' 07

0] X-1

K hI  'l h2

Fig F-1. Discretized Domain for Nonlinear Problem
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It is necessary to have at least one double node because

the differential equation with the boundary conditions given

by Eq (F-2) has exactly one discontinuity. The double node

allows the specification of the discontinuity, or jump, in

the approximate solution. The jump is modeled by two equa-

tions. They are:

--. 4=

4 = 6 + A (F-6)

where A is the change in slope between elements. The first

equation insures continuity of the function across the inter-

element boundary; and the second guarantees the required,

change in slope.

With this discretization, the finite element equa-

tions can be derived by the same process as the linear prob-

lems. (See Appendices C and D.)

Equation (F-6) is solved hy an iterative process.

With the substitution c n(i) = N. (xN n , the iterative

equation for element e becomes

h

J {1- NkkNixN. dXJn+l =

O<x<h i=1,2,3,4

e=1,2 j=1,2,3,4

k11,2,3,4 (F-7)
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where nare the nodal solutions obt ained from the n

iteration.

By the exact same process Eq (F-4) gives

fh 

h

1-{lNk~n NiNjdxO l (1-Nk k) N.dx
0 xxx0 X X

O<x<h i=1,2,3,4

e=1,2 j=1,2,3,4

k=1,2,3,4 (F-8)

The shape functions chosen are the cubic functions

given in Appendix E. The local shape function derivatives

can be written in the form

N- h )Ji + i(x

O<x<h i=1,2,3,4 (F-9)

where

A. 4, -21S h h'

1 h' h

With N.i in this form Eqs (F-7) and (F-8) can be
x

written in the following form for h 1 =h 2 = h

K. *,* n+1 F F.

j=1 ,2 , . .4

e=1,2

where
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K h [A AjrF+(A Bj+B Aj)r 2 + BiBjr 3 ] (F-9)

r= 8481 + 10582 + 140

= 7081 + 8482 +.105 (F-10)

r= 60a1 + 7082 + 84

and for Eq (F-7) - formulation A

= 3[21 0-3n  +h (02n+04 n )

82 = - [ 3 (in-03n) +h (202n+ 4 n)]

Fi = 0 i=1,2,3,4 (F-lI)

and for Eq (F-8) - formulation B

3
= -ii [2 ( inn) +h( .2n+ 4 n)]

11

F1 = 1 + + (F-12)

F3 = 1 18 + 3082 + 60)
3 60 1 2

=h

F4  h (681 + 582)

The products of Ai and Bi in matrix form are as follows for

h 1/2.
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144 48 -144 24

16 -48 8
[AA] [A(.Aj]

1)144 -24

(symmnetric) 4

-288 -84 288 -60

-24 84 -18
CAB [A 1) Bij -288 60

(symmetric) 12

144 36 -144 36

9 -36 9
[B] 1B) 144 -36

(symmetric) 9

Sample Problem F-i. The nonlinear problem for

A=2 is solved by formulation A. The initial guess is

For element 1:

1 2
r1 =77,r 2 =63,r 3 54

thus,

720 348 -720 12

K1 206 -348 -32

ii 4 720 -12

(symmetric) 38
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For element 2:

1= -3, B = 3

r = 203, r2  147, r = 114

3312 1500 -3312 156

1 746 -1500 4
ij 840 3312 -156

(symmetric) 74

Assembling the elemental matrices in the global system equa-

tions gives

720 748 -720 12 0 0 0 0

206 -348 -32 0 0 0 0 02

720 -12 0 0 0 03
3

38 0 0 0 0 1

3312 1500 -3312 156 01

746 -1500 4 6

3312 -156 1

symmetric) 74

Substituting the jump conditions and the boundary condi-

tions gives the reduced system equations. They are
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720 -12 0 0 0 348

-12 38 0 0 0 324

1 0 -1 0 0 =

0 1 0 -1 0 6 2

0 0 156 4 74 0
8

Solving this equation gives the following which matches the

exact solution.

= 0, 1, 0.5, 1, 0.5, -1, 0, -11

The next iteration is performed with which gives

i This second iteration gives the same numerical

results as the first, implying convergence of the algorithm.

Collocation

The domain is discretized in the same manner as

for the Galerkin's method. The derivation of the finite

element equations is by the same procedure as followed in

Appendices C and D for this method. The two formulations

give the following global equations for element e.

Formulation A:

1 h _1 n n+l
{'l-.'Nk kh)Nj N N k n _ - jR 0

x X=X

0<x<h i=l,2,...,m

e-1,2 j-l,2,...,m

k=l,2,...,m (F-13)
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Formulation B:

1lN kk n)N i+N J N k~ik n 3 .,n+1 N- iji- n

kz=1,2,...,m (P-14)

The cubic shape functions given in Eq (F-9) are used for

this method also.
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